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Abstract

OpenTL is a general-purpose software library for model-based object tracking,
written in C++.

OpenTL allows simultaneous tracking of multiple targets, with different de-
grees of freedom, using multiple cameras and visual modalities, as well as rep-
resenting all of the available model information in a seamless and user-friendly
class interface, for a wide variety of algorithms and systems.

OpenTL is implemented in a hierarchical and modular fashion, where the
most relevant features are derived from common abstractions in order to achieve
a highly modular, scalable and parallelizable architecture. Within this frame-
work, several state-of-the-art computer vision and tracking methodologies can
be readily implemented and tested.

In this report, an overview of the OpenTL architecture will be given, as
well as a step-by-step tutorial for learning how to build the first object tracking
application.



Chapter 1

Installing OpenTL

1.1 Hardware requirements

In order to use the OpenTL library, your hardware should meet the minimum
system requirements shown in table 1.1. Altough the library was developed
platform-independently, it currently supports installation on Windows XP and
Ubuntu Linux (Jaunty). The processor(s) must be able to deal with MMX,
SSE, SSE2 instructions, which is the case for almost all modern CPUs.

Some processing steps of the library are directly performed on the graphics
card (GPU) in order to obtain real-time performance. Depending on the subset
of delivered library modules a modern graphics card will be required, which
conforms at least to the OpenGL specification 2.1 and provides the following
OpenGL extensions:

• GL EXT gpu shader4

• GL ARB texture rectangle

• GL ARB draw buffers

These GPU extensions are usually provided by a GeForce series 8 (8600 GT and
upper) card. The supported extensions of any OpenGL-capable graphics card
can be determined by looking at the output of the glewinfo command, that is

Minimum Recommended
Processor Intel 2 Ghz single core Intel > 2 Ghz Core Duo
Memory 1GB 2GB
Graphics card NVIDIA GeForce 8600 NVIDIA GeForce 9800
Operating Systems Microsoft Windows XP/Vista 32bit or Ubuntu Jaunty Linux (32/64bit)
Free disk space 300MB (OpenTL and 3rd-party dependencies)
Internet connection For installation only (download of 3rd-party dependencies)

Table 1.1: System hardware requirements
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included in the Glew library package that -only for Windows- is also shipped
within the OpenTL installer.

1.2 Installation Steps for Microsoft Windows XP

In order to install OpenTL on Windows XP, run the OpenTL-0.8.0-Windows-
x86.exe executable, which contains an installer that guides you through the
installation process. Each step of the installer is depicted below.

Now the OpenTL software is installed on your system, and Setup will ask to
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install the required 3rd-party dependencies. In case you have already installed
any of these dependencies, you can at any time press ”Cancel” in order to skip
a specific dependency.

The first dependency installed is the Visual Studio Redistributable package1.

The next dialog will ask you to install the CMU Firewire camera drivers.

Afterwards, the Setup dialog will ask you to install the Boost C++ library.
Please make sure to select the right options, which are depicted in the screen-

1Note: you can skip this package if you already have Visual Studio 2008 installed.
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shots below.

Finally, the last Setup dialog will ask you to install the OpenCV library.
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After the Setup installation, your system should be ready to run the pre-
compiled OpenTL tutorial applications.

However, in order to develop and compile code using the library, you will
also need to install the compile-time dependencies of section 1.5.

1.3 Installation Steps for Ubuntu Jaunty

The OpenTL package for Linux is provided as a Debian package (OpenTL-
0.8.0-Linux-*.deb). In order to install the library the dependencies have to be
installed first. This can be done by executing the following command as root
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[t]
Dependency Version Default install path Shipped
Boost 1.36 PrgFiles\Boost yes(as downloader)
CMU1394 drivers 6.4.5 PrgFiles\CMU\1394Camera yes(as installer)
OpenCV 1.0 PrgFiles\OpenCV yes(as installer)
Glew 1.4.0 OpenTL\externals yes
Freeglut 2.4.0 OpenTL\externals yes
DevIL OpenTL\externals yes
WinGSL OpenTL\externals yes
NVIDIA Cg Toolkit optional NONE optional
OpenGL >= 2.1.1 with GPU driver no, GPU driver

Table 1.2: Run-time dependencies (Windows)

user:

apt-get install freeglut3-dev libboost-serialization1.37-dev \
libboost-thread1.37-dev, libc6-dev libcv-dev libcvaux-dev \
libdc1394-22-dev libdevil-dev libgcc1 libglew1.5-dev \
libgsl0-dev libhighgui-dev libraw1394-dev libstdc++6

Afterwards, the provided OpenTL Debian archive can be installed by exe-
cuting the following command (still as root):

dpkg -i OpenTL-0.8.0-Linux*.deb

In order to access the camera device, please make also sure that the per-
missions of the /dev/raw* and /dev/video* files are appropriately set for the
developing user.

1.4 Software run-time dependencies

Figure 1.2 shows the run-time dependencies for Windows and Figure 1.3 shows
the ones for Linux.

On Windows, all required dependencies are either included in the OpenTL
installer, or will be downloaded during the installation process. The Linux
version relies on dependencies provided by the Ubuntu software repository. For
the installation process, see section 1.2(respectively, 1.3)2.

1.5 Software compile-time dependencies

Required build and repository tools (Windows)

• Microsoft Visual Studio 2008: C/C++ programming environment used
for developing OpenTL and its applications

2Note for Linux Users: Install the *-dev packages, if you plan to develop with OpenTL.
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Dependency Version Shipped with OpenTL
Boost 1.37 no, in Ubuntu repository
OpenCV 1.0 no, in Ubuntu repository
Glew 1.4.0 no, in Ubuntu repository
Freeglut 2.4.0 no, in Ubuntu repository
DevIL no, in Ubuntu repository
GSL no, in Ubuntu repository
libdc1394 2.x no, in Ubuntu repository
libraw1394 no, in Ubuntu repository
NVIDIA Cg Toolkit no, installed with GPU driver (NVIDIA)
OpenGL >= 2.1.1 no, installed with GPU driver (NVIDIA)

Table 1.3: Run-time dependencies (Linux)

• CMake 2.6.2: Tool to generate platform-independent Makefiles and Projects
for both Windows and Linux compilers

Required build and repository tools (Linux)

• GCC: C++ compiler under Linux

• CMake 2.6.2: (see above)

1.6 Using CMake to create a Visual Studio So-
lution
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In order to build a Visual Studio Solution with CMake, the following main
steps must be performed after installing OpenTL (ref. to the 4 pictures above):

1. Specify where the source code and output build directories for the tutorial
applications can be found. Usually the latter is a build/ subfolder within
the former.

2. Click on Configure in order to configure the CMake internal variables
(containing paths to library sub-modules, external dependencies, etc.)

3. If the previous step has been successfully done, click OK in order to generate
the makefiles and Visual Studio solution

4. The generated solution file should be in the build directory above speci-
fied, with the same name of the folder (tutorials.sln)
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Tutorial application: a
color-based particle filter

OpenTL provides all of the desirable building blocks for visual tracking, concern-
ing:

1. Prior models

2. Computer vision

3. Bayesian tracking

In order to introduce the user to the basic features of OpenTL, we start
with a relatively simple application: a color-based particle filter. This tutorial
describes how to achieve the goal in five main steps, meanwhile introducing the
relevant library classes and methods.

2.1 Step 1: Camera input and video output

The very first step for a visual tracking application concerns grabbing frames
from the camera, and displaying the video signal on-line (Fig. 2.1).

OpenTL currently supports IEEE-1394 FireWire camera inputs as well as
standard Webcams, from one or multiple devices, both for Linux and Windows
OS. In particular, webcam inputs are handled through the OpenCV camera
functions.

In OpenTL we provide a main abstraction opentl::input::ImageSensor,
from which we derive the following classes:

• opentl::input::FirewireCamera: IEEE-1394 FireWire cameras, for both
Windows and Linux OS

– opentl::input::LinuxDC1394Camera
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Figure 2.1: Tutorial 1: capture and display on-line the camera stream.

– opentl::input::WindowsCMU1394Camera

• opentl::input::OpenCVCamera: standard Webcams, handled through
the OpenCV capture functions

In order to describe both type of cameras, for this tutorial we provide two
versions. In the tutorial code, they can be selected at startup, by specifying
a command line parameter. For the tutorial applications using cameras, one
command line option has been added to switch the type of camera to use, such
that the user may specify the camera type at start up by

./tutorial# -camType <GUPPY|SONY|OPENCV>

In order to display all available command line options for a tutorial application,
the user may call the application with the help option:

./tutorial# -help

The output for tutorial 1, when starting with the help option, is shown in
Figure 2.2

Figure 2.2: Output of tutorial 1, when calling with the help option

2.1.1 FireWire camera input

The abstract class opentl::input::FirewireCamera from the opentl::input
namespace provides this platform-independency, so that we can write the same
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application code for both OS. At compile time, it is automatically decided which
inherited class (LinuxDC1394Camera or WindowsCMU1394Camera) to instantiate,
and link to the code.

In particular, under Windows this class uses the CMU library drivers, whereas
on Linux the standard libdc1394 is used.

The first instruction

opentl::input::FirewireCamera::getNumberOfFirewireCameras();

retrieves the number of currently connected FireWire cameras of our machine.
Afterwards, we select one device (for instance, number 0) and create the camera
class

input::FirewireCamera::createFirewireCamera(0);

We notice that both instructions so far are static code; after creating the
camera, we can use the internal class methods. The next call

camera->open();

initializes the device, and

camera->captureStart();

starts the acquisition engine. We suppose so far to use a camera with FORMAT
7 pixel coding, which requires a de-bayering mechanism, in order to pack input
pixels into the standard RGB image format. This is the default choice, but
of course there are several other possibilities; however, in this first tutorial we
only cover the basic functionalities, and refer the user to the FireWireCamera.h
header file for more details.

If we desire to set an automatic color adjustment we can use

camera->enableWhiteBalanceAuto(true);

as well as automatic gain adjustment (to the environment light)

camera->enableGainAuto(true);

Next, we declare an image which will contain the camera input frame. In
OpenTL, images are handled through the class Image of the core::cvdata
namespace, which is built on top of the OpenCV IplImage data structure, and
contains the necessary facilities for allocation, accessing and copying.

Image( int initWidth, int initHeight,
ColorChannels initChannels = RGB,
BitsPerChannel bpc = BPC8U);

The first two arguments here specify image resolution, the third one is the
number of channels, and the last the number of bits per channel, that completely
reflects all OpenCV image types: for example, RGB are 3-channel color images,
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and BPC8U specifies 8 bits, unsigned (corresponding to unsigned char values).
For a complete list of available types, please refer to the Image.h header file.

The camera input class already contains an image with the corresponding
resolution and pixel format, whose pointer we can obtain with the function
FirewireCamera::getImage().

Moreover, in order to record the input to a video, we declare a video writer
(OpenCV class CvVideoWriter)

cvCreateVideoWriter( "video.avi",
codec, 30.0,
cvSize(camera->getImageWidth(),
camera->getImageHeight()), 1

where codec is a suitable output video format; in our example we use the XViD
codec, given by the OpenCV macro CV FOURCC(’X’,’V’,’I’,’D’).

Now we start the main on-line loop, that performs the following operations:

1. Acquire a new frame

camera->captureNext();

2. Get the camera image (as pointer)

srcImage = camera->getImage();

3. Display it on screen

cvShowImage("image",srcImage->getIplImage());

4. Add it to the output video

cvWriteFrame(video, srcImage->getIplImage());

The loop can be exited at any time by pressing the esc key.

2.1.2 USB camera input

In a second version, we consider a simple Webcam device, that can be handled by
the OpenCV-HighGUI functionalities, through the CvCapture data structure.

For this purpose, the class opentl::input::OpenCVCamera contains most of
the same methods and data of the ImageSensor abstraction; we do not repeat
here the previous code description, but only point out the main differences.

• the constructor for OpenCVCamera is direct (unlike the virtual constructor
opentl::input::OpenCVCamera(0))

• we do not yet provide automatic gain, and color balance adjustments, for
USB cameras
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• in the OpenCVCamera class, usually the image is flipped upside down, so
we currently need to flip it back manually, by using

cvFlip(srcImage->getIplImage())

• at the end, we call delete camera;, which in turn calls the virtual de-
structor deleteFirewireCamera().

For the rest, no other modifications are done.

2.2 Step 2: Pose representation and screen pro-
jection

Now we will learn how to specify and use the degrees of freedom of the object
model.

For this purpose, we start with a simple task: to project a few points from
object space to camera screen, under a given pose representation (Fig. 2.3).

Figure 2.3: Tutorial 2: Draw a simple shape model at a given pose (2D trans-
lation and scale).

The first step consists of declaring the pose class: we choose a simple 2D pose,
consisting of: uniform scale s, and translations tx and ty); the corresponding
transformation matrix is given by

T =


s 0 0 tx
0 s 0 ty
0 0 1 0
0 0 0 1

 (2.1)

This is accomplished by declaring a variable of the class Pose2d1ScaleTranslation

opentl::core::cvdata::Pose2d1ScaleTranslation pose(
opentl::core::cvdata::Pose::COMPOSITIONAL);

Notice that this class belongs to the opentl::core::cvdata namespace,
and in particular to the POSE 2D subset of types, which is the set of planar,
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uncalibrated transformations. Furthermore, the update mode has to be specified
in the constructor. Here one my choose between Pose::COMPOSITIONAL and
Pose::ADDITIVE, which corresponds to an exponential representation for the
former and an additive for the latter one.

Afterwards, we need to insert this pose representation into a state, which
may include also other parameters such as velocity, acceleration, etc. (in this
case, pose is the only state variable). For this purpose, we need the class State,
which is part of the opentl::core namespace.

Moreover, in order to access states in a thread-safe way, each state is created
through a shared pointer from the Boost library as

boost::shared ptr<opentl::core::State> state;

The state must be initialized with the pose type and data, and we accomplish
this by using the above defined pose template

state.reset(new opentl::core::State(&pose));

where the two non-specified flags (false, by deafult), specify the presence of
velocity and acceleration variables in the state (here they are not present).

We can read the overall number of state parameters (which is 3) with

state->getPoseDegOfFreedom()

In order to set the current pose parameters, we declare a vector with 3
components, from the math:: namespace. For example,

math::Vector pose data(dof);
pose data[0] = -50;
pose data[1] = 50;
pose data[2] = -50;

and we set the state with

state->setPoseData(&pose data);

This instruction tells to set the whole state from a single vector containing
the pose data, with the proper dimension (pose+velocity+acceleration dimen-
sions). In our case, no velocity or acceleration components are present, therefore
pose data has the right dimension. Note, that the scale factors are represented
in a logarithmic way in OpenTL, s.t. a scale parameter of −50 is mapped to the
finally applied scale factor s by

s = 1.01pose parameter

Next, we need to declare the camera model. This is done by using the
SensorModel class from the opentl::models namespace

opentl::models::SensorModel sensor;
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Although OpenTL currently handles only camera input, for sake of generality
we denote this class as sensor model. A general, calibrated camera setup requires
two informations for each camera:

• Internal parameters (acquisition model)

• External parameters (relative world location)

However, for our simple 2D transform, an uncalibrated model can be pro-
vided, where no external parameters are given (world coordinates coincides with
camera coordinates), and the internal parameters are only the horizontal and
vertical image resolution (no focal length is needed).

The latter is accomplished by the following

sensor.setK(focus, xres, yres);

where xres,yres are the image resolutions, and focus is set to 1. This com-
mand sets the internal matrix K, in this case given by

K =

 1 0 0 rx/2
0 1 0 ry/2
0 0 0 1

 (2.2)

The base frame origin of the coordinate system then resides at the center of
the image, with y pointing down and x pointing to the right.

The overall mapping, from object to screen homogeneous coordinates, is
always given by

ȳ = K · T · x̄ (2.3)

y =
[

ȳ1

ȳ3

ȳ2

ȳ3

]T

In our framework, multiple cameras can be present, therefore we need to put
them again in a std::vector of pointers (no shared pointers are required for
cameras, since they are read-only input classes).

std::vector<models::SensorModel *> sensVector;

Now we can declare the main class of this tutorial application: the Warp.
This class is part of the modelprojection namespace, and it has always a
unique instance throughout the application. Its semantics consists of managing
the relationship (mapping) between all object and camera spaces. In other
words, it acts as a “dispatcher”, that projects points from each target to each
camera, according to the current state, and compute screen Jacobians as well
(if required).

opentl::modelprojection::Warp warp(sensVector);
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The Warp class keeps a pointer to the sensors inside, and gets each time the
pose parameters for a given object, both when updating projection matrices,
and when computing individual point projections and derivatives.

Whenever the state vector changes (or at the beginning), the warp class
requires updating the internal camera matrices (and Jacobians, if required),
before projecting individual points on the screen. This is obtained by calling
the warpUpdate function

warp.warpUpdate(state.get());

with the current state vector.
Now we take a few points in homogeneous object coordinates (math::Vector4),

corresponding to the four corners of a square

math::Vector4 objP1(-50, -100, 0, 1);
math::Vector4 objP2(50, -100, 0, 1);
math::Vector4 objP3(50, 100, 0, 1);
math::Vector4 objP4(-50, 100, 0, 1);

where we set the z coordinate to 0, since we have a planar mapping. This is an
arbitrary choice for 2D poses, since any non-zero value is just ignored. The cor-
responding screen projections, for the warp function, are of type math::Vector2
(inhomogeneous screen coordinates).

math::Vector2 screenP1, screenP2, screenP3, screenP4;

In order to do the screen projection, we call the main function warpPoint:

void warpPoint( cvdata::Pose& objPose,
const math::Vector4* objPoint,
math::Vector2* screenPoint,
std::vector<math::Vector2>* jacobian = NULL,
int cameraIdx = 0, int linkIdx = 0);

In this function, the first argument is a generic Pose class (passed by reference),
which in our case has the type core::cvdata::Pose2dRotoTranslation. The
second argument is a pointer to the object point in homogeneous coordinates
(math::Vector4); output screen coordinates (math::Vector2) are also passed
by pointer, and the screen Jacobian is a (2× dof) matrix

J ≡ ∂y

∂p

which is an optional argument for this function. Finally, cameraIdx specifies
the viewing camera (for a multi-camera setup), and linkIdx the skeleton part
which this point belongs to (for articulated, multi-body structures). By default
they are set to 0.
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We call this function 4 times, for each object point

warp.warpPoint(*state->getPose(), &objP1, &screenP1);
warp.warpPoint(*state->getPose(), &objP2, &screenP2);
warp.warpPoint(*state->getPose(), &objP3, &screenP3);
warp.warpPoint(*state->getPose(), &objP4, &screenP4);

In order to plot results, we declare a color image with the same resolution
of the (virtual) sensor device

opentl::core::cvdata::Image img(xres,yres);

Afterwards, we cast the screen points to a CvPoint structure

CvPoint pt1 = cvPoint(cvRound(screenP1[0]), cvRound(screenP1[1]));

and similarly for the others. This allows to use the OpenCV drawing functions
cvCircle and cvLine, that we use to draw the shape. For example, we have

cvLine(img.getIplImage(), pt1, pt2, CV RGB(255,255,255), 1);

In this call, we use the method getIplImage() in order to retrieve the internal
pointer to the OpenCV data structure

IplImage* getIplImage();

Similarly, also matrices and vectors can access the internal CvMat pointer, by
calling Matrix::getCvMat(), Vector::getCvMat().

At the end, we should get an output that should be comparable to the left
image in Figure 2.3.

2.3 Step 3: Shape and appearance model

In the previous step we learned how to represent an object pose through the Pose
class, and to project individual points from object to camera space, through the
Warp class.

Now we consider the full object shape, represented by a set of connected
primitives (polygons, edges and vertices) of a CAD model. This provides a
wire-frame representation of the object (OpenGL-style), that however contains
no information about the surface appearance, which is also needed by the color-
based application that we are building.

Therefore, in this tutorial step we will take from the on-line camera input a
simple but complete shape and appearance model, consisting of a rectangular
shape and a reference image; this model will be obtained by simple mouse
operations(Fig. 2.4).

The main new class introduced here is called ShapeAppearance, which is
part of the opentl::core::cvdata namespace:

opentl::core::cvdata::ShapeAppearance shapeApp;
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Figure 2.4: Tutorial 3: From the on-line camera input (left) take a reference
shape and appearance model (right).

We begin as always by declaring the main OpenCV window, on which we
set up a mouse callback function through the HighGUI functionalities

cvNamedWindow( "Input", 1 );
cvSetMouseCallback( "Input", mouseCallback, 0 );

where mouseCallback is a function that takes care of mouse events happening
over the window, in particular left button press and release, and dragging pointer
over the window. As a result, this callback provides the rectangular region of
the camera stream, from which we want to get the shape and appearance model.

In order to interface the callback with the main code, we need to declare
some global variables: the input image (cvdata::Image * image), the output
selection (CvRect selection) and a few static variables for the callback itself
like button press/release flags.

Afterwards, we set up the camera and run the input as in Step 1. In order
to set up the appearance model, we declare an additional color image

core::cvdata::Image * appearance = NULL;

that will be allocated at the right moment, with the selected rectangle size. In
the main loop, the input image is updated with the camera input, while the
mouse callback handles the user interaction with the display window, until a
rectangle has been dragged onto the window.

This events sets the flag ready shape to true, so that the model can be
taken. At this point, we declare the shape model as a rectangle, with the same
size of the selected region, but centered about the origin (0, 0, 0, 1) in object
coordinates. This is done by the initRectangle function.

shapeApp.initRectangle(selection.width, selection.height);

Afterwards, we allocate the appearance image with the same size, and copy the
reference image under the selected area, by using the OpenCV cvSetImageROI
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and cvCopy functions. This image must now be inserted into the shapeApp
class. Since an object appearance can be specified by multiple reference images
(that can also be used as texture maps), we put the image in a std::vector

std::vector<opentl::core::cvdata::Image *> imageList(1, appearance);

Moreover, each image is identified and retrieved through its name, in order
to avoid confusion arising from numerical indexes. We give it here the name
MyAppearance

sprintf(strbuf, "MyAppearance");
std::vector<char *> namesVec;
namesVec.push back(strbuf);

and finally insert it into the model

shapeApp.initAppearance(&imageList, &namesVec);

Finally, we can verify the internal appearance model by retrieving this image
by name

shapeApp.getMaterialByName("MyAppearance")

Notice that, for sake of generality, we call the internal appearance images ma-
terial, since they may also represent textures (if a texure map is given).

2.4 Step 4: Set up the color-based likelihood

So far, we obtained a model of the object to be tracked, and we learned how
the mapping between object and camera space works.

The next step is then how to compare the model with the current image,
under a given pose hypothesis: this is the likelihood function

P (z| s)

where s is the object state, and z are the measurement data, associated to
the object. This function expresses the probability of the observed data, if the
“true” state were s; in other words, it models our sensory processing system in a
probabilistic form, where the uncertainty may arise from many sources, namely
signal noise, modeling errors of any type, etc.

In our case, the camera provides raw sensory data (color images), containing
a large amount of information that can be pre-processed in many different ways.

Therefore, in computer vision many different likelihood models have been
developed, that can be roughly classified according to:

1. The visual modality (edges, colors, motion, . . . )

2. The level of abstraction of the resulting data, namely: pixel-, feature- or
state-space data
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In order to understand this tutorial step, we briefly recall then our Modality
abstraction from the opentl::modalities namespace, that unifies all visual
modalities at any processing level, through the following abstract methods:

1. preProcess(): Model- and state-independent image processing, produc-
ing data suitable for the subsequent matching

2. sampleModelFeatures(): Collect visible features from the shape and ap-
pearance model, at predicted pose s− (also called off-line features)

3. matchPixel/Feature/ObjectLevel(): Match model and image data, and
produce output at one of the three levels: pixel maps, associated features,
or a Maximum-Likelihood state estimate

4. updateModelFeatures(): From image data, after updating the state s,
update also the model features (or better, the on-line version of these
features)

Here, we consider measurements arising from a color-based modality (color
histograms in Hue-Saturation space), which is processed at feature-level; there-
fore, our measurement data is a color histogram, to be compared to the corre-
sponding model histogram via a suitable distance metric E (for example, the
Bhattacharyya distance).

After the metric has been defined, in order to state the probabilistic model
P (z| s) we also need to know the covariance of the residual noise, R, so that
finally we have a simple, Gaussian model

P (z| s) ∝ exp
(
− E2

2R2

)
For more details about this modality and the likelihood function, please

refer to the paper [?]. In OpenTL, we have a dedicated class for this kind of
processing, called ColourHist2D, which inherits from the Modality abstraction:

1. preProcess(): Convert the camera image from RGB to HSV color space

2. sampleModelFeatures(): Collect the HSV histogram from the reference
appearance model (off-line)

3. matchFeatureLevel(): Collect the underlying image histogram under the
predicted pose, and compute the Bhattacharyya coefficient

4. updateModelFeatures(): From image data, after updating the state s,
update also an on-line reference histogram

In Fig. 2.5, we see an example of the color-based likelihood evaluation.
The first part of the code for this tutorial step is the same as step 3 (set up

camera input, mouse callback, and obtain the shape and appearance model),
that we do not repeat here.
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Figure 2.5: Tutorial 4: Color-based likelihood evaluation between the reference
model (see Fig. 2.4) and the current image, under a fixed rectangular area
(green rectangle). The likelihood is computed in real-time (left), while moving
the camera around the object.

Afterwards, we need to encapsulate all model information (shape, appear-
ance and degrees of freedom) in a unique container class, called ObjModel

ObjModel obj(&shapeApp,
core::cvdata::CvData::POSE 2D 1SCALE TRANSLATION);

that is part of the opentl::core::models namespace. In the constructor, we
pass the shape and appearance information, plus the degrees of freedom, which
this time are directly given as data type POSE 2D 1SCALE TRANSLATION, instead
of using a template instance of the corresponding Pose class.

This constructor has also a third argument, namely the motion model (we
will see it in the next tutorial step) of the class models::Motion::MotionType
that by default is set to BROWNIAN: this is a simple Brownian model, where only
the pose is part of the state, while velocity is a white Gaussian noise (process
noise).

As already mentioned, the state of an object concerns its temporal infor-
mations like the pose, and possible velocities and accelerations. To provide a
convenient way of handling informations about tracked objects, the information
about them is stored within a Target-class, taking care of concrete single in-
stances of tracked objects, which thus is related to the respective object model.
The Target-class is part of the opentl::models namespace, handles all infor-
mations about a single object (like its states, etc.) and due to thread-safety
issues is declared as a Boost shared pointer. Since possibly multiple targets are
tracked simulatneously, we need to declare a vector of targets by:

std::vector<boost::shared ptr<models::Target> > targetVec;

Since the targets depend on the object model, instances of a concrete target
type are directly created from the ObjModel class:

obj.addNewTargets(1, &targetVec);
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which inserts 1 new target in the target vector, of the corresponding type of the
obj class.

As we learned from Step 2, in order to map from screen to camera space
we also need a Warp class, and a SensorModel; this is done in the usual way.
Here we also introduce a new class: SensorData, from the opentl::models
namespace. This is an abstract container for the sensor raw data (in our case
an Image), that is used by the Modality classes for processing.

opentl::models::SensorData sensData(srcImage);

which, at construction time, needs to know which type of data is produced by the
sensor (in this case, and Image template). Moreover, we also link the particular
image pointer to the class, through the method SensorData::setData

sensData.setData(srcImage,false);

so that the camera image stored in srcImage can be directly used by this class
(without need for copying data). This kind of abstraction is meant for future
developments of OpenTL, if other sensor types will be introduced (for example
laser ranges, infrared sensors etc.).

Now we can declare the color-based modality class ColourHist2D. For this
purpose, we first need to se some parameters; since each modality may have
many parameters for all of its processing steps, of very different type and seman-
tics, we introduce the abstract data container class opentl::core::util::ParameterContainer,
as a general base class for the modality abstraction, which is differently defined
for each modality. The ParameterContainer in general distinguishes between
Online and Offline parameters, where the former are allowed to be changed dur-
ing processing, and the change of the latter forces the user to do a reinitialization
of the modality.

For color histograms, we specify the following relevant parameters (for feature-
level matching):

• ColourFormat preProcess DestColorFormat: output color space for the
pre-processing step (HSV in our case)

• int sampleModelFeatures Bins1,2,3: number of bins for each dimen-
sion of the histogram (H,S,V respectively)

• double matchFeatVariance: this is the variance R, for the feature-level
likelihood above defined

• bool matchFeatWithMdetect: Flag, specifying whether to use the off-line
histogram for matching

• bool matchFeatWithMtrack: whether to use the on-line histogram for
matching

• double matchFeatMtrackWeight: weight for the on-line model histogram
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• double matchFeatMdetectWeight: weight for the off-line model histogram
(similarly for Mtrack)

In order to set up the Modality, we first instantiate the class by

ColourHist2D * pColHisto =
new modalities::ColourHist2D(warp, camIdx)

where camIdx is the camera number (for multi-camera setups, we have a modal-
ity instance for each camera). Afterwards, the parameters may be set to the
desired values by:

pColHisto->setParameter<paramT >
(opentl::modalities::ColourHist2D::param name, value );

with paramT the type of the parameter and param name the name of the pa-
rameter as specified in the list above. Note that if the user does not set a value
for a parameter at this stage, the modality will be initialized with predefined
default parameters. Finnally to make the parameters valid and conclude the
initialization, the user calls

pColHisto->init();

The next class we need is the likelihood:

modalities::Likelihood likelihood;

This class handles all of the visual modalities and data fusion classes, in order
to produce the target-related measurements for the correction step.

In particular, this class has two main methods that are used by different
kind of Bayesian tackers

• implicitModel: P (z| s), with P the likelihood function

• explicitModel: z = h(s) +v, with v the explicit measurement noise, and
h the expected measurement

For a particle filter, we require in particular the implicitModel, as will be
described in the next tutorial step; instead, for Extended Kalman Filters the
explicitModel provides the measurement residuals E = z − h(s) (also called
innovations) and the covariance R of v (supposed to be a Gaussian noise).

In order to use these methods, we need to connect the likelihood class to the
visual modalities and data fusion, and OpenTL can do it in a flexible way, by
building a measurement tree. For the present tutorial we use only one modality,
that we pass as a template at construction time

likelihood.addChild(pColHisto, modalities::Modality::FEATURE LEVEL);

which internally clones and stores the Modality class template, through its
Modality::clone() method. The specification Modality::FEATURE LEVEL tells
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the likelihood to internally call a feature-level matching: matchFeatureLevel
The output likelihoods from implicitModel are stored in a vector, and multiple
states (arising from multiple targets and/or particle hypotheses) can be simul-
taneously evaluated. In a multi-thread version of this class, this will provide
a high degree of parallelism with a tremendous performance impact; however,
this is not the only place in OpenTL where parallel computing can take place,
since also multiple modalities and cameras for the same target can be evaluated
in a multi-thread fashion.

Some modalities require an off-line sampling of visual features from the
shape and apperance model. This is the case for ColorHist2D, where the
method sampleModelFeatures collects a reference histogram from the appear-
ance model; in particular, we need to call this function from the likelihood
class, which internally hosts the clone of our Modality, and calls its method

likelihood.sampleModelFeatures(targetVec);

For threading issues, the number of particles is divided into partitions. In
the present case threading is out of scope, and therefore we set the number of
active partitions in the for the target to 1 and set the active state vector to the
first one by:

targetVec[0]->resizeActivePartitions(1);
targetVec[0]->setActiveState(0, targetVec[0]->getState(0));

Before starting the camera loop again, we reset the object pose to the center
of the image

poseVec[0] = 1;
poseVec[1] = 0;
poseVec[2] = 0;
targetVec[0]->getState(0).get()->setPoseData(&poseVec);

and update the internal transformation matrices with the warpUpdate method

warp->warpUpdate(targetVec[0]->getState(0).get());

Now we can re-start the camera loop, in order to compare the incoming
images with the reference model, under the given pose, and get the likelihood
value. The first step for this purpose, as we explained at the beginning, is image
pre-processing

pColHisto->preProcess(&sensData);

where the sensor data are used (which contain a pointer to the camera image).
Then, the likelihood is obtained by simply calling

likelihood.implicitModel(&targetVec, 0);

where 0 is the number of the partition. In order to retrieve the value of the
active sample we call

targetVec[0]->getActiveWeight(0)
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, display the value on the output console and observe that the maximum value
should be obtained when the interior of the projected rectangle (green box) is
the same as the appearance image.

Finally, in order to show the model at the given pose, we introduce another
static function, which is part of the output namespace:

output::Output::drawPose( cvdata::Image* img,
cvdata::CvData* visFeat,
object::Warp* warp,
cvdata::Pose* pose,
int thickness = 1,
CvScalar color = cvScalarAll(255.0),
bool drawEdgeNormals=false,
bool drawEdges=true
int camIdx = 0);

The first argument is the output image, the second specifies the kind of data we
wish to visualize (normally the object::ShapeAppearance); then we need the
Warp class and the specific Pose data, and finally some data related to the line
style, color, whether to draw screen edges and normals (the latter are useful for
debugging purposes), and the camera view (for multi-camera contexts).

2.5 Step 5: Set up the particle filter and track
the object

In this part of this tutorial “closes the loop”: based on the visual measurement
so far described, we want to update our knowledge about the current object
state, in a Bayesian fashion (prediction-correction).

For this purpose, OpenTL offers several filters that can be used in differ-
ent situations, such as: single or multiple targets, linear/nonlinear measure-
ment or dynamics, Gaussian/non-Gaussian noise distributions, and different
measurement levels (pixel/feature/object). These filters are provided inside
the tracker:: namespace, and all are derived from the common abstraction
Tracker, which has 3 virtual methods

1. init(): Initialize the filter with a prior distribution (usually Gaussian, or
uniform)

2. predict(): From the previous state posterior, generate the prior distri-
bution using the dynamical model (models::Motion)

3. correct(): From the current prior, perform a measurement (calling on
of the likelihood methods explicitModel, implicitModel) and update
the new posterior. Afterwards obtain a meaningful, unique output state
for output purposes (e.g. the Kalman Filter mean, or the particle average)
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In particular, for the present color-based task we have a highly nonlinear
measurement model (histogram distance), for which no Jacobian matrices are
available. This case is suitable for a SIR (sample-importance-resampling) par-
ticle filter, that we can instantiate right after the likelihood declaration, with

SIRParticle particle(&likelihood, warp);

The constructor accepts the likelihood class, of which internally instantiates
a clone (that means, the likelihood class that we declared so far now is used
as a template for construction). Therefore, if we need to access the Modality
methods, we need to do it indirectly, from the Tracker class: in particular, in
order to sample off-line the reference histogram from the appearance image, we
call

particle.sampleModelFeatures(targetVec);

which calls the internal likelihood method, which in turn calls the internal
ColourHist2D method. To initialize the particle filter, the number of particle
hypotheses have to be specified, which is done in a per target based fashion, by
first specifying a vector containing the number of particles for each target by

std::vector<int> nOfParticles(1,200)

where in our example, with 3 degrees of freedom and a single target, we set it to
200. Furthermore, an initial state for each target has to be given which in our
case is the predefined position of the selected rectangle. The final initialization
is done by

particle.init(targetVec, &initStates, NULL, &nOfParticles);

with initStates a vector of Boost shared pointers of states:

std::vector<boost::shared ptr<core::State> > initStates;

We can see a snapshot of the previously defined object, tracked in real-time
with the color-based particle filter, in Fig. 2.6.

Now, in order to track the object, we call in the main camera loop the above
mentioned methods

pColHisto->preProcess(&sensData);
particle.predict(targetVec);
particle.correct(targetVec);

where the preProcess method must be called before any other processing step.
Once again, we notice that preProcess is the only method that should

be called from the original Modality template pColHisto, and not from the
Tracker or Likelihood classes.

This is meant for efficiency reasons, since the same modality can be used in
order to instantiate more tracking pipelines, that share a common image pre-
processing step; the output of this step is, in fact, also shared by all tracking
pipelines that have been instantiated from the same template.
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Figure 2.6: Tutorial 5: Color-based particle filter. Top row: the object with
shape and appearance model defined in the previous steps is tracked on-line
from different viewpoints. Bottom row: the same frames with superimposed
particles, representing the estimated posterior distribution (the green rectangle
represents the weighted average of the particle set).

Afterwards, we can display the output of our tracker by taking the internal
output state of the respective target

targetVec[0]->getOutputState()

that corresponds to the weighted average of the particle states for target 0
(in a multi-target context, we may need this index as well). The function that
provides visualization of our model is output::Output::drawPose, as described
in Step 2.4.

For debugging purposes, we can also draw the entire particle set, by calling
the same function on each particle p state particle.getParticles(p).

2.6 Step 6: Tracking multiple targets

Part 6 of this OpenTL tutorial extends the tracker of step 5 to a multiple target
version. OpenTL supports the tracking of multiple target due to the use of
vectors for all kind of objects used for tracking including:

• targets
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• shapes

• appearances (reference images)

• object models

One can make - as described in step 3 - a rectangular selection around the
object to track. This selection can be done in this step more than once. Multiple
objects in the scene can be selected and tracked with only one particle filter.

For each selection of the user a new reference image (appearance), a new
shape (with the dimension of the selection and the selected reference image),
a new object model (with motion model, and pose representation), and a new
target is created. Everything else stays the same.

Figure 2.7: Tutorial 6: Tracking multiple targets using color-statistics and par-
ticle filtering. The left row shows three targets that have been selected with the
mouse. The upper colomn shows the result of the tracking in different frames
of a video sequence. The lower column shows the respective hypothesis of the
particle filter.

2.7 Step 7: Measurement fusion with another
modality

The next step consists of adding a second modality to the processing tree in or-
der to provide a fusion of different modalities. We’ll use the ContourPointsGPU
modality, which is an intensity edge based modality, implementing the abstrac-
tion in the following way:

1. preProcess: Extract the edges of the image by applying an appropriate
method. At the moment one may choose between the Sobel -Filter, Canny-
Edge map, or a combined approach of both methods.
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2. sampleModelFeatures: project the model at the given pose into the im-
age, find the visible edges from the camera view and uniformely sample
those edges with points for the matching step.

3. matchFeatureLevel: match the projected visible edges against the edges
found in the preProcess-step, by doing a search along the normels of
the sample points retrieved from the sampleModelFeatures-step. Here
we restrict to searching the closest edge along the normal only, yielding a
single hypothesis.

Furthermore, like all modalities, it is part of the opentl::modalities names-
pace. It is also notable, that the ContourPointsGPU modality, is a feature-level
modality and, as can be seen from the name, some computations are done on
the GPU. At the moment, those are the visibility testing and sample point gen-
eration. In order to add this modality to the processing tree, we first instantiate
it by

ContourPointsGPU * pContourPoints =
new ContourPointsGPU(objectModels, warp, &scene, camIdx);

where scene is an object of the modelprojection::GLScene class. This class
is responsible for handling the virtual OpenGL representation of the real scene,
which is needed for GPU-programming purposes as well as more efficient visu-
alizations. The GLScene class is instantiated by

GLScene scene(objectModels, &sceneParams);

with sceneParams a struct of parameters for the scene. We here only mention
the most important two parameters for the moment, which are the dimensions
of the scene:

construct initWindowSizeX/Y

Afterwards, like for the ColourHistogram modality, the modality specific pa-
rameters are defined. We set the following parameters for the ContourPointsGPU
modality:

• bool matchFeatLevel useFixedCov: use a fixed value for the covariance

• double matchFeatLevel fixedCov: the fixed value for the covariance

• FeatDetectFilterType preProcess featureFilterType: CANNY, SOBEL
or CANNY AND SOBEL

• double matchF angleThreshold: maximum angle between matched edge
and projected edge (this is only possible for CANNY based filters)

• double matchF missingAssocRate: Expected percentage of unassociated
contour points

• bool matchF robustFlag: Use robust object level algorithm or not
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• std::vector<unsigned int>
matchF edgeSearchlengthAlongNormalinPixel: For each link, the num-
ber of pixels to search along the normals

• bool matchF nearestNeighbor: use the nearest neighboring edge pixel
as measurement

• bool matchF enableDebugOutput: enable the generation of debug output
images

• bool generate visCheck: generate the visibility checking class automat-
ically

Like for the ColourHist2D modality, to finalize the initialization of the modality
we call

pContourPoints->init();

Now we can add the ContourPointsGPU to the likelihood computation by

likelihood.addChild(pContourPoints,
core::cvdata::FEATURE LEVEL, 0.5);

note, that 0.5 reflects the contributing weight of the modality to the likelihood
computation and therefore also has to be set to 0.5 for the ColourHist2D modal-
ity at this place. Internally, the joint likelihood is computed by first multiplying
the single likelihoods of each modality by the assigned weights, and finally do-
ing a product of the resultant values. Within OpenTL this is called a dynamic
fusion at feature level. Moreover, for this step we only use the single target
version of our tutorial application (up to step 5). Fig. 2.8 shows the output
results of the application.
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Figure 2.8: Tutorial 7: Tracking a single target using dynamic fusion of color-
statistics and intensity-edges with particle filtering. The upper row shows the
estimated output state in green on the left hand side and on the right hand
side additionally all other used particles in white. The bottom row shows the
selected appearance image on the left hand side, and the edge image with the
matched normal points for one particle on the right hand side.
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Chapter 3

The modular structure of
OpenTL

In this Chapter, we briefly overview the OpenTL modular architecture, which
has been in more detail presented at the CoTeSys Workshop [?], as well as in
[?].

Fig. 3.1 provides a sketch of the layered module architecture of OpenTL, con-
sisting of about 200 C++ classes distributed in 11 functional modules. Shown
are the top-down dependencies across layers.

In the implementation, all classes have been organized according to the re-
spective module namespaces. In particular, the topmost namespace is opentl,
and all sub-spaces are hereafter described.

1. Layer: matrix computations

The base layer contains facilities for algebra and matrix computation and
manipulation, as well as general math utilities.

• Math module: opentl::math namespace contains all matrix data
types and computations, derived from a common abstraction Ma-
trix. The Math module does not depend on any other module inside
OpenTL, but it depends on external libraries (e.g. OpenCV).

2. Layer: base data structures and pose representations

The second layer contains almost all of the data structures and pose rep-
resentation classes, providing the core functionalities of OpenTL.

• Core module: opentl::core contains the base data types and pro-
cessing, including geometric transformations and Jacobians compu-
tation, image data, and visual feature structures. It is organized into
three subspaces:

– opentl::core::cvdata: Most of the OpenTL data structures
are defined here. All of them inherit from the base abstraction
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Figure 3.1: The OpenTL module architecture.

CvData, for the most different purposes: state-space represen-
tations (which in turn inherit from a general Pose abstraction);
image data; shape and appearance model; visual features of the
most variable nature and descriptor (inheriting from a common
abstraction)

– opentl::core::util: File interface utilities, including an ab-
stract data serialization class (input/output) and directory man-
agement

– opentl::core::parser: Specialized parsers for object models
(COLLADA format) and command-line options for running ex-
ecutable application code

The opentl::core module depends on opentl::math for the base
matrix and vector data.

3. Layer: tracking models (off-line/on-line) and image processing

Layer 3 holds model-free image processing facilities, as well as object data
on a higher level than the core module (i.e. target-related); here also GPU
shaders for model-free image processing are provided.

• Models and tracking data: In this module, the main namespace models
contains classes for two main purposes:

34



OpenTL - User Guide

– Object models: shape, appearance, degrees of freedom, dynamics
– Data processed within the tracking pipeline (Layer 6): sensor

data, measurements, state hypotheses

It depends on the opentl::core main data structures (for example
shape and appearance data).

• Model-free data processing : The namespace opentl::cvprocess con-
sists of model-free image and sensory data processing methods. Many
of these methods have been implemented in an efficient way using the
GPU shader language (GLSL), and the OpenGL contexts for render-
ing (on-screen and off-screen) are here provided.
All of the functions implemented in this module do not make use
of prior models, nor of any state hypothesis: examples include edge
detection, color conversion, camera image de-bayering, invariant key-
points detection, etc. This module also depends on the core data
structures.

4. Layer: object-to-sensor space mapping

The fourth layer consists of classes mapping between object and sensor (in
particular, image) spaces. Here are also included advanced GPU-based
facilities, for example a sampler of visible model edges from any given
viewpoint.

• Model projection module: The opentl::modelprojection names-
pace provides classes for object-to/from-image mapping facilities:
geometric features projection and derivatives, back-projection using
depth maps, as well as GPU-based model rendering and features
sampling.
It depends on opentl::models (shape/appearance and state), and
on opentl::cvprocess (base GPU shaders).

5. Layer: multi-modal visual processing

Layer 5 contains the visual modalities for tracking: they perform all model-
based processing operations required for data association and fusion (both
over multiple modalities and targets), and deliver output measurements
to the trackers/detectors of the upper layer.

• Visual modalities: The opentl::modalities namespace includes a
common abstraction for model- and state-based measurement pro-
cessing, related to the most different visual modality (color, template,
edges, etc.). In particular, the common functions are:

(a) pre-processing
(b) model features sampling
(c) static/dynamic data association
(d) measurement Likelihood, residual and Jacobian computations
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(e) multi-modal and multi-camera data fusion
(f) model features update (after state update)

This module depends on opentl::modelprojection, because it needs
to map features between object and image space in order to per-
form matching, sampling and update operations. It also depends
on opentl::cvprocess, because each modality makes use of specific
image processing.

6. Layer: tracking pipeline

Here the main tracking pipeline is realized, through the main abstractions
tracker and detector, as well as sensory input and output visualization.

• Input module: Common abstraction for input sensor devices (e.g.
FireWire, USB and Ethernet cameras), providing open/init/close
and data acquisition methods. It depends on opentl::core, because
of the Image data type.

• Detector module: Common abstraction for object detection (model-
based and model-free).
Its purpose is to find new targets (=initial states) as well as remove
lost tracks, without any prior information about number and location
of the new targets, eventually using knowledge of the already existing
targets.

• Tracker module: Here several Bayesian trackers, including Gaussian-
based filters (such as the Extended Kalman Filter) and Monte-Carlo
filters (particle or MCMC filters) are implemented under the same
abstraction - prediction, measurement, data association and fusion,
correction.
It depends on Modalities, because the measurement is performed by
calling the Likelihood, which in turn calls the modality processing
tree.

• Output module: Classes for output visualization (e.g. model render-
ing), post-processing (e.g. track loss detection) and simple control
tasks (e.g. pan-tilt unit controller through a serial port).
It depends on ModelProjection, because of the OpenGL rendering
and mapping facilities.

7. Layer: User application interface

The HighAPI module in the topmost layer is finally meant to encapsulate
the tracking pipeline in a more compact and user-friendly API, with an
easier system and parameter specification.

• HighAPI module: High-level interface to the tracking pipeline (cur-
rently work in progress).
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